1

2

2.1
2.2
221

3

3.1
3.2
3.3
3.4
3.5
3.6

The democodetools and democodelisting
DEPRECATED

Alceu Frigeri

October 2025
(September 2022)

Abstract

This has been DEPRECATED in favour of codedescribe. It isn’t sup-
ported since late 2022. The following documentation is just for the historical
record. Loading this will generate an error (package deprecated), IF you really
want to use it, you can still use it as \usepackage{democodetools-1.0.1}.

Abstract

This is ‘yet another doc/docx/doc3’ package. It is designed to be ‘as
class independent as possible’, meaning: it makes no assumption about page
layout (besides ‘having a marginpar’) or underline macros. Furthermore, it’s
assumed that \maketitle and the abstract environment were modified by
the underline class, so alternatives (based on the article class) are provided.
The main idea is to be able to document a package/class loading it first and
then this, so that it is possible not only to document the ‘syntax’ but also to
show the end result ‘as is’ when using that other specific class/package.

Contents

Introduction

democodelisting Package L
In Memory Code Storage.
Code Display/Demo
(delisting-keys)ooo i

democodetools Package L
Environments.
Describe Commands
Macros Typeseto
Args Typeset

1 Introduction

OO T O s WD NN~

The packages/classes doc/docx/doc3 (and for that matter doctools) where designed
to be used with dtx files, which is handy for package developers, as long as one is
fine with the ‘default article’ format (which is true most of the time). This came to
be from the willingness of having the ‘new look and feel’ used in doc3, but, instead

of having to rely on a standard class, being able to use any class as the base one,
which allows to ‘demonstrate the documented commands with the final layout’.

democodelisting defines a few macros to display and demonstrate IXTEX code
verbatim (using listings and scontents), whilst democodetools defines a series of
macros to display/enumerate macros and environments (somewhat resembling the
doc3 style).

2 democodelisting Package

It requires two packages: listings and scontents
Defines an environment: stcode and
4 commands: \DemoCode, \DisplayCode, \TabbedDisplayCode and \setdclisting.

2.1 In Memory Code Storage

Thanks to scontents (expl3 based) it’s possible to store IXTEX code snippets in a
expl3 key.

stcode \begin{stcode} [(keys)] \end{stcode}
This environment is an alias to scontents environment (from scontents package),
all scontents keys are valid, with an additional one: st which is an alias to the
store-env key. The environment body is stored verbatim in the st named key.

2.2 Code Display/Demo

\DisplayCode \DisplayCode [(dclisting-keys)] {(st-name)}
\DemoCode \DemoCode [(dclisting-keys)] {(st-name)}
\TabbedDemOCOde\TabbedDemoCode[(dclisting—keys}]{(st—name)}
\DisplayCode just typesets (st-name) (the key-name created with stcode), in verba-
tim mode with syntax highlight.
\DemoCode first typesets (st-name), as above, then it erecutes said code. Finally
\TabbedDemoCode does the same, but typesetting it, and executed code, side by side.
N.B. Both typeset and executed code are placed inside a minipage so that, when
executing the code, one can have, for instance, 'normal’ paragraph indentation.
For Example:

KETEX Code:

\begin{stcode} [st=stmetal
Some \LaTeX~coding, for example: \ldots.
\end{stcode}
This will just typesets \Key{stmetal}:

\DisplayCode{stmetal}
and this will demonstrate it, side by side with source code:

\TabbedDemoCode [numbers=left,codeprefix={inner code},resultprefix={inner result
}{stmeta}

BETEX Result:

This will just typesets stmeta:
ETEX Code:

Some \LaTeX~coding, for example: \ldots.

and this will demonstrate it, side by side with source code:
inner code inner result

Some \LaTeX~coding, for example:
\ldots.

Some IXTEX coding, for example:

\setdclisting \setdclisting{(dclisting-keys)}

Instead of setting/defining (dclisting-keys) per \Demo/\Display call, one can set those
globally, better said, in the called context group .

N.B.: All \Display/\Demo commands create a local group (\begingroup) in which
the (dclisting-keys) are defined, and discarded once said local group is closed.
\setdclisting defines those keys in the current context/group (\def, \edef)

2.2.1 (dclisting-keys)

Using a key = value syntax, one can fine tune listings syntax highlight.

(dclisting-keysjettexcs, settexcs2, settexcs3
texcs, texcs2, texcs3
texcsstyle, texcs2style, texcs3style
Those define sets of KTEX commands (csnames), the set variants initialize/redefine
those sets (an empty list, clears the set), while the others extend those sets. The
style ones redefines the command display style (an empty (par) resets the style to
it’s default).

setkeywd, setkeywd2, setkeywd3
keywd, keywd2, keywd3

keywdstyle, keywd2style, keywd3style
Same for other keywords sets.

setemph, setemph2, setemph3

emph, emph2, emph3

emphstyle, emph2style, emph3style
for some extra emphasis sets.

numbers, numberstyle
numbers possible values are none (default) and left (to add tinny numbers to the

left of the listing). With numberstyle one can redefine the numbering style.

stringstyle, commentstyle
to redefine strings and comments formatting style.

bckgndcolor
to change the listing background’s color.

codeprefix, resultprefix

those set the codeprefix (default: TEX Code:) and resultprefix (default: KTEX Re-
sult:)

3 democodetools Package

3.1 Environments

Macros \begin{Macros} {(macrolist)} [(space)]
Envs \begin{Envs} {(envlist)} [(space)]
Those are the two main environments to describe Macros and Environments. Both
typeset (macrolist) (csv list) or (envlist) (csv list) in the margin. The opcional
(space) is “added” to the left marging length. N.B. Each element of the list gets
\detokenize
Syntax \begin{Syntax}
The Syntax environment sets the fontsize and activates \obeylines, so one can list
macros/cmds/keys use, one per line.
ETEX Code:
\begin{Envs}{Macros,Envs}
\begin{Syntax}/,
\Macro{\begin{Macros}}{macrolist}
\Macro{\begin{Envs}}{envlist}
\end{Syntax}
Those are the two main ...
\end{Envs}
Args \begin{Args}
Keys \begin{Args+}
Dgi}gﬁg \begin{Keys}
\begin{Keys+3}
\begin{Values}
\begin{Values+}
\begin{Options}
\begin{Options+}
Those environments are all the same, starting a dedicated description list. Together
with the many \Description... commands, one can list all Options, Args, Keys,
Values as needed. The + form are meant to be used with the \Description. ..+
forms, for in text lists. The non + form are meant to have the many ’descriptors’ in
the margin par.
3.2 Describe Commands
\DescribeMacro \DescribeMacro*!+{(csname)} [(oarglist)] {(marglist)}
* typesets the macro name in bold face.
! (marglist) is treated as an expandable code, ’as is’.
+ the macro name is typeseted in text.
(csname) macro name (\detokenize)
(oarglist) csv list of optional args.
(marglist) csv list of mandatory args.
\DescribeArg \DescribeArg*+ [(type)] {(arg)}
\DescribeKey \DescribeKey*+ [(type)] {(arg)}
\DescribeValue
\DescribeOption

\DescribePackage

\Macro

\oarg
\marg
\parg
\xarg

\Arg
\Meta

(type)

(arg)

\DescribeValuex*+ [(type)] {(arg)}
\DescribeOption*+ [(type)] {(arg)}
\DescribePackage*+ [(type)] {(arg)}

* typesets it in bold face.

+ typesets in text (not in marginpar)
(type) key/arg/... format

(arg) key/arg/... name.

3.3 Macros Typeset

\Macro {(csname)} <(embl)> [(olist)] {(mlist)}

\Macro! {(csname)} <(embl)> {(par.desc.)}

When describing a macro (csname) (Command Sequence, csname) the (olist) and
(mlist) are comma separated lists (csv) of optional and mandatory arguments. (embl)
are optional, single char, ’embellishment’ tokens, like * ! +. Finally, in the ! form,
the (par.desc.) is any text representing the macro parameter list (for non regular,
non usual, cases).

KETEX Code: KETEX Result:
\Macro
i;ﬁ:;i?}<*!>[opt1,opt2]{arg3} \Macrox*! [(opt1)] [{opt2)] {(arg3)}
{\Macro}<!>{\xarg{embl}\marg{par. \Macro! <(embl)>{(par.desc.)}

desc.}}

3.4 Args Typeset

\Arg [(type)] {(arg)}

\Meta {(arg)}

Those are meant to typeset the diverse kinds of 'command’s arguments’ (mandatory,
optional, parenthesis . . .). \Meta{arg} typesets arg as (arg).

defaults to Meta (it’s the csname of any valid formatting command, like Meta, textbf,

etc.)
the argument name itself.
ETEX Code: ETEX Result:
\oarg{fam}
\parg{xtra} _
\marg [textbf] {text} [(fam)] ((xtra)) {text} <(x-text)>

\xarg{x-text}

\Key
\Keylst
\KeyUse

\Env
\Pack
\Value

\MetaFmt

\MarginNote

\dcAuthor
\dcDate
\dcTitle
\dcMakeTitle

dcAbstract

3.5 Keys Typeset

\Key [(pre)] {(key)}

\Keylst [(default)] {(keylst)}

\KeyUse { (key)}value

To typeset a (Key) or (keylst) (csv list). (pre) is just prepended to (key) whilst
(default) is the default key value. \KeyUse is just a short-cut for a, possible, common
construction.

ETEX Code: ETEX Result:
\Key{Akey}
STy Akey
\Keylst [Bkey]{Akey,Bkey} Akey, Bkey Default: Bkey
keyA = (arg)
\KeyUse{keyA}{arg}
\Env [(pre)] {(key)}

\Pack [(pre)] {(key)}

\Value [(pre)] {(key)}

Similar to \Key above, they will typeset a (Key). (pre) is just prepended to (key)
whilst (default) is the default key value.

3.6 Others

\MetaFmt* [(type)]

It sets the font size, series, face as defined by (type), (type) being one of Oarg, Marg,
Parg, Xarg, Macro, Code, Key, KeyVal, Option, Value, Default. The star version
uses bold.

\MarginNote {(text)}
As the name implies, to add small margin notes.

\dcAuthor {(name)}

\dcDate {(date)}

\dcTitle {(title)}

\dcMakeTitle

Those allow one to define (as in standard article, book, report classes) the document
author, date and date \dcMakeTitle will write a typical title+author heading (as in
the article class).

\begin{dcAbstract} \end{dcAbstract}
Same as above, for the abstract.

	Introduction
	democodelisting Package
	In Memory Code Storage
	Code Display/Demo
	dclisting-keys

	democodetools Package
	Environments
	Describe Commands
	Macros Typeset
	Args Typeset
	Keys Typeset
	Others

